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1 A note on left censoring

  

1 Introduction

Left censoring occurs in a duration model when a statistician observes only
those spells which either are in the middle of continuation at the time of the
first observation or start during the observation period. It is assumed that
the statistician has no record of those spells which had ended by the time
of the first observation. A special treatment of the problem is necessary
because ignoring left censoring will overestimate the mean duration as
longer spells tend to be observed more frequently than shorter spells. This
is called selectivity bias.

Different cases of left censoring arise depending on the following
considerations: (1) Spells in the middle of continuation at the time of the
first observation are either completely or partially observed. Suppose such
a spell started at s, continued on to 0 (the time of the first observation), and
ended at t. The statistician may observe only s (by asking how long the spell
had lasted), only t, or both. (2) Spells which start after the time of the first
observation are either observed or not observed. (3) For a single individual
we either observe a single spell or a sequence of spells in different states.

In each possible case we will consider how the selectivity bias is elimi-
nated. If the model is fully specified, this is accomplished by the method of
maximum likelihood estimation, which is fully efficient. However, in certain
situations, a less efficient but more robust method, which does not require
the full knowledge of the model specification, may be possible and desir-
able.

Although we treat the case of a homogeneous population, the adjust-
ment for a heterogeneous population is simple as it will be indicated in
appropriate places.

The problem of left censoring is dealt with only scantily in the general
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statistical literature. For example, standard textbooks on duration analysis
such as Kalbfleisch and Prentice (1980) or Cox and Oakes (1984) devote
less than a page to the problem. Miller (1981) mentions only a different
kind of left censoring from what we discuss here. One can find more discus-
sion in the econometric literature (for example, see Lancaster (1979), Flinn
and Heckman (1982), Ridder (1984), and Amemiya (1985)). Here we try to
give a more complete, unified treatment of the subject.

2 A single state model

The duration data are generated according to the following scheme: a dura-
tion starts in an interval [a, b], which encloses 0, and the starting time X is
distributed according to density h(x). Duration T is distributed according
to density f(t) and distribution function F(t). We assume that X and T are
independent. The statistician observes only those spells which end or are
censored after 0. We will consider three types of left censoring and for each
type will derive the likelihood function assuming a homogeneous popula-
tion. The result can be easily modified for the case of a heterogeneous
population, as we will indicate below.

Type 1 left censor

Here the spell that was going on at time 0 is completely observed. Three
kinds of spells are depicted in the above figure; we will write the likelihood
function as a product of three parts corresponding to the three kinds. Each
part is to be divided by the probability of observing a spell. Define

A15{x,t | t.2x, 0.x.a} and A25{x,t |x.0}.

Then

P1;P(A1 )5 h(x)[12F(2x)]dx (1)E
0

a
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P2;P(A2 )5 h(x)dx. (2)

The probability of observing a spell, denoted by P, is P11P2. Finally, the
likelihood function can be written as

L15 h(xi) f (ti) h(xi) f (ti) h(xi)[12F(b2xi )] P21. (3)

Note that the first and second kinds of spells are treated symmetrically.
In the next section we will show that dividing the first part by P1 and the
second and third part by P2 leads to a consistent but less-efficient estima-
tor.

Type 2 left censor

Here the spell that was going on at time 0 is observed only after 0. The like-
lihood function differs from (3) only in its first part and is given by

L25 h(x) f(ti2x)dx h(xi ) f (ti) h(xi)[12F(b2xi)] P21.

(4)

Type 3 left censor

p
all

p
3

p
2

E
0

a

p
1

p
all

p
3

p
2

p
1

E
b

0

A note on left censoring 9

a b0

1

2

3

a b0

1

2

3



Here the spell that was going on at time 0 is observed only up to 0. Again,
the likelihood function differs from (3) and (4) only in its first part.

L35 h(xi)[12F(ti)] h(xi) f (ti) h(xi)[12F(b2xi)] P21. (5)

So far we have assumed a homogeneous population. The necessary
adjustment for a heterogeneous population is straightforward. Merely add
subscript i to h, f, F, a, and b, and hence also to P. Otherwise, the likelihood
function (3), (4), or (5) is unchanged.

3 Why divide by P

Now we answer the question posed after equation (3): Why is it less efficient
to divide the first part by P1 and the second and third part by P2? We will
consider Type 1 left censor; the other types can be similarly analyzed. For
simplicity we will assume that there is no right censoring. Therefore, there
are only two kinds of spells and the spell which reaches b is observed until
its end. In this case the correct likelihood function is (3) except the third
part. We will first give a heuristic and then a rigorous argument.

Rewrite (3) as

L15 h(xi) f (ti) h(xi) f (ti) P21

L15 h(xi)[ f (ti)]P1
21 h(xi) f (ti)P2

21 P1 /P P2 /P;L11L12, (6)

where L11 consists of the first two products. From the above it is clear that
dividing the two parts separately by P1 and P2 means ignoring L12. It means
ignoring information that a particular spell is either the first kind or the
second kind. The estimator that maximizes L11 is a conditional maximum
likelihood estimator; therefore, it is consistent but less efficient.

To advance a rigorous argument, we must introduce a parameter vector
u to estimate. Although we will treat u as a scalar in the subsequent analy-
sis, an extension to the vector case is obvious. Suppose f depends on u but
h does not. Taking the natural logarithm of the first line of (6) and ignor-
ing h because it does not depend on u, we have

log L15 log f (ti)2nlog P (7)

where n is the number of observed spells. Differentiating (7) with respect to
u and noting P2 does not depend on u, we have

(8)
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Although it is not necessary to do so because a maximum likelihood
estimator is generally consistent, we can directly check it by noting

E 5 hfdtdx2 5 hfdtdx2 50 (9)

where A5A1<A2 and N is the total number of spells both observed and
unobserved.

Differentiating (8) again with respect to u

52 1 1 2 . (10)

Therefore

2E 5 hdtdx2 . (11)

As usual, the asymptotic variance of (û2u) is given by the inverse of
(11).

Next, taking the log of L11 and ignoring the terms that do not depend on
u

log L115 log f(ti)2n1log P12n2log P2. (12)

Therefore

5 2 . (13)

As in (9), we can show

E 50 (14)

which implies the consistency of the estimator that maximizes L1. As in the
case of L, the asymptotic variance is the inverse of

2E 5 hdtdx2 . (15)

Since L11 is a conditional likelihood function, this result is correct, but one
can also directly show the equality of (15) to N21V(­logL11/­u).

By comparing (15) with (11), one can readily see the inefficiency of the
estimator that maximizes L11 relative to the true maximum likelihood esti-
mator.
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4 A simple example

In this section we will evaluate the variances of the above two maximum
likelihood estimators in a very simple duration model. We will also calcu-
late the degree of inconsistency of an estimator which does not correct for
selective bias. We assume that spells start either at 21 or at 0 with equal
probabilities. From either starting point, a spell lasts for 1.5 with probabil-
ity p and 0.5 with probability 12p. We observe only those spells which end
after 0. Supposing we observe m1 spells which started at 21 and lasted for
1.5, n1 spells which started at 0 and lasted for 1.5 and n2 spells which started
at 0 and lasted for 0.5, how should we estimate p?

Ignoring selectivity

This estimator maximizes the product of unadjusted probabilities

S5pm11n1(12p)n2. (16)

Therefore, p̃5 (m11n1)/(m11n11n2) and plim p̃5p2 ( p22p)/(11p). The
parameter p is overestimated because the short spells that started at 21
were not observed.

Maximizing conditional LF

The conditional likelihood function (aside from a constant term), the
conditional maximum likelihood estimator, and its asymptotic distribution
are given by

L15pn1(12p)n2 (17)

p̂15 (18)

( p̂12p)→N{0, 2p(12p)} (19)

where N is the total number of spells including those which are not
observed. Note that since (18) defines the estimator explicitly, (18) can be
verified directly by a central limit theorem. However, the asymptotic vari-
ance may also be obtained as the inverse of the information matrix as we
did in the previous section. The same remark applies to the next estimator.

Maximizing full LF

The full likelihood function (aside from a constant term), the maximum
likelihood estimator, and its asymptotic distribution are given by

ÏN

n1

n1 1 n2

12 Takeshi Amemiya



L5pm11n1(12p)n2(11p)2(m11n11n2) (20)

pp̂5 (21)

( p̂2p)→N{0, p(12p)(11p)}. (22)

From (19) and (22), we see the extent of the inefficiency of the conditional
maximum likelihood estimator.

5 Observe only spells continuing at 0

In this section we consider the model in which duration data are generated
by the same scheme as in section 2 but we observe only those spells which
are continuing at time 0. Since we can concentrate on the starting time in
the interval [a, 0], we will assume that the support of density h(x) is [a, 0].
We assume a homogeneous population, but the adjustment for the case of
a heterogeneous population is simple as in section 2. As before, we consider
three types of censoring. For each type the likelihood function is the first
part of the likelihood function of section 2 divided this time not by P but
by P1. Thus

L15Ph(xi ) f (ti)P1
21 (23)

L25P h(x) f (ti2x)dx P1
21 (24)

L35Ph(xi )[12F(ti )]P1
21. (25)

When we take h(x) as uniform density and take the limit of a going to 2`,
we obtain the three formulae (11.2.75), (11.2.76), and (11.2.71), respec-
tively, given in Amemiya (1985, p. 448).

6 Method which does not require starting-time distribution

Next, we will consider Type 1 left censor as adapted in the model of section
5 above, for which the full likelihood function is (23), and discuss a consis-
tent estimator which does not require the knowledge of h(x). It is the esti-
mator that maximizes the product of conditional densities of t given x. This
estimator was used by Lancaster (1979), and its properties were studied by
Ridder (1984). Such an estimator is useful because it is often difficult for a
researcher to specify h(x) correctly. The aforementioned formulae in
Amemiya do not depend on h(x) but this was accomplished by an arbitrary
assumption of its uniformity. Although we treat the case of a homogeneous

E
0

a

ÏN

m1 1 n1

m1 1 n1 1 2n2
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population, the adjustment for a heterogeneous population is simple as in
section 2. This estimator maximizes

L*5 . (26)

Clearly, it is a conditional maximum likelihood estimator. Taking the log-
arithm

log L*5 log f (ti)2 log[12F (2xi)]. (27)

Differentiating (27) with respect to u

5 1 . (28)

Consistency follows from noting

E 5 hfdtdx1 hfdtdx

5 h(x)[12F(2x)]dx1 h(x)F (2x)dx

5 h(x)dx (29)

50.

Differentiating (28) again with respect to u

52 1 1

1 . (30)
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E 5 hdtdx (33)

E 5 h(x)[F(2x)]dx (34)

we have

2E 5 hdtdx2 hdtdx. (35)

The information matrix of the full maximum likelihood estimator that
maximizes (23) is analogous to (15) except that the integration in the right-
hand side is over the set A1. Thus

2E 5 hdtdx2 . (36)

That (36) is greater than (35) follows from the Cauchy–Schwartz inequality

ExU 2 ExV 2$ (ExUV )2 (37)

where Ex(Z )5 zh(x)dx, U5 , and V5 .

Unfortunately, a simple consistent estimator which does not require the
knowledge of h(x) has not been found for Type 2 or Type 3 left censor in
the model of section 5. In the model of section 2, there exists an even
simpler consistent estimator of u which does not require the knowledge of
h, provided h does not depend on u. It works for any of the three types and
simply amounts to maximizing the second and third product each divided
by P2: namely

Maximize h(xi) f (ti)P2
21 h(xi)[12F (b2xi)]P2

21.

In the case of Type 1 left censor, this method can be combined with the
method proposed earlier to obtain a more efficient estimator: namely, that
which maximizes

L*5 h(xi) f (ti)[12F (2xi)]
21 h(xi) f (ti)P2

21 h(xi)

[12F (b2xi)]P2
21. (38)
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If h(x) does not depend on u as before, h(xi) and P2 can be eliminated from
the right-hand side of (38). The estimator is consistent and its asymptotic
variance can be obtained by the same method described above.

There is an alternative method, which, although not consistent, may
work reasonably well for Type 2 left censor in the model of section 5. In this
method, the term after the product symbol in the right-hand side of (24) is
specified to be an appropriate function of t and a new set of parameters.
This method can be easily adjusted for heterogeneous population and has
been used in empirical applications (see, for example, Gritz (1993)).

7 Semiparametric estimation of h(x) and u

Goto (1993 and 1996) considered the semiparametric maximum likelihood
estimation of density h(x) and the parameter u that appears inside f in the
model (23). He proved that when the maximizing value of  h(x) is inserted
back into (23), one obtains the conditional likelihood function (26). Thus,
we can interpret the conditional maximum likelihood estimator that max-
imizes (26) as the semiparametric maximum likelihood estimator of the
model (23).

We will give a sketch of the proof. We are to maximize

L5 (39)

with respect to function h(·). We can take h(·) to be a step function taking
the value of hi over the interval of length d around the observed xi and zero
elsewhere, where d5 (Shk)21. Then, since

h(x)[12F (2x)]dx>S
k

dhk[12F (2xk)] (40)

we can write (39) as

L5 (41)

Therefore, we should maximize
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Differentiating the logarithm of the above with respect to each hi and
setting the derivative equal to zero, we obtain

2 50 (43)

where we have defined ai512F(2xi). These can be rewritten as 

hi5 h1, i51, 2,…, n. (44)

Summing both sides of the above over i and noting S
k

hk51, we obtain

hi5 . (45)

Finally, putting (45) back into the maximand in (42) yields

(46)

which is the same as (26) except for a factor which does not depend on u.

8 Separate estimation of h(x)

The density h(x) may also be estimated using a sample either independent
of that used to estimate u or an augmented sample including that used to
estimate u. Nickell (1979) used the method but did not analyze its effect on
the asymptotic distribution of the maximum likelihood estimator of u.

We consider the estimator of u that maximizes

L̂15P f (ti )P̂1
21 (47)

where P̂15 ĥ(x)[12F(2x)]dx. As ĥ(x), we can, for example, use the fol-

lowing simple method: divide the interval [a, 0] into small intervals of
length d and for each interval estimate h(x) by the relative frequency of the
workers who became unemployed in the augmented sample. If the size of
the independent or augmented sample is K, we must have d→0 and dK→
`. In this case we have (see Bickel and Doksum (1977, p. 385))

| ĥ(x)2h(x) |5O (48)

provided that h(x) is continuous in [a, 0].
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If we denote this estimator by û, its asymptotic distribution can be
obtained from

(û2u)52 . (49)

The second-derivative term above divided by N will converge to the same
limit as if h were not estimated, provided that d→0 and dK→`. So, here,
we will only consider the first derivative part. We have

> 2 (D2P1)

1 [ĥ(x)2h(x)]C(x)dx, (50)

where C(x)5­F (2x)/­u1P1
21(­P1/­u)[12F (2x)] and Di51 if Ti.2Xi

.0 and 0 otherwise. From (48) and (50) it is clear that only when K goes to
infinity at the rate faster than N, estimating h has no effect on the asymp-
totic distribution.

It is better to estimate P1 by P̂15 [12F(2x)]dĤ(x), where Ĥ is the

empirical distribution function. Thus, P̂15 [12F(2xi)]. In this case,
we can show

> 1 d [Ĥ(x)2H(x)] (51)

but since

d [Ĥ(x)2H(x)]→N[0, V(­F/­u)], (52)

the asymptotic variance of this estimator adds cV(­F/­u) to that of the
maximum likelihood estimator with the known h(x), where cK5N for
some constant c (see Prakasa Rao (1987, p. 391)).

9 Two-states model

In this section we consider a model in which an individual starts a spell in
either state 1 or state 2 at time a, with probability p and 12p respectively.
The transition from state 1 to 2 occurs with density function f1(t) and dis-
tribution function F1(t). The transition from 2 to 1 is done according to f2(t)
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and F2(t). The statistician starts observing spells at time 0. As in section 2,
the spells that are continuing at time 0 will be completely or partially
observed, leading to the three types of censoring. The subsequent spells of
an individual, after the spell that is continuing at 0 terminates, will be
observed up to time b. However, unlike in section 2, possible selectivity bias
need not be taken into account for these subsequent spells, because the
starting time of a subsequent spell is determined by the end of the preceding
spell. For this reason this model has more similarity to the model of section
5. Although we treat the case of a homogeneous population, the adjustment
for a heterogeneous population is simple as in section 2.

We need to distinguish the following two cases: (1) the statistician
observes spells in both states at time 0; (2) the statistician observes only
spells in one of the states at time 0. We will assume that the subsequent
spells of both states will be observed, but this is not a crucial assumption.

Observe both states

The likelihood functions corresponding to the three types of censoring can
be written as follows:

L15 h1(xi) f1(ti) h2(xi) f2(ti) (53)

L25 h1(x) f1(ti2x)dx h2(x) f2(ti2x)dx (54)

L35 h1(xi)[12F1(ti)] h2(xi)[12F2(ti)] (55)

where the numbers at the bottom of the product sign refer to the two states
rather than two kinds of spells as in section 2.

A feature of this model which makes it more complex than the single-
state model is that h(x) is a very complicated function of p, f1, and f2. Thus,
if u is the vector of parameters that characterize f1 and f2, we can no longer
assume that h(x) does not depend on u. This fact makes the full maximum
likelihood estimator generally very complicated and increases the advisabil-
ity of a simple consistent estimator which does not require h(x). We will
briefly indicate how h1(x) can be determined. It can be calculated by
summing the densities of all the possible event histories prior to x. First of
all, x5a with probability p. Therefore, strictly speaking, we should allow
for the possibility that hs that appear in the right-hand side of (53) and (55)
are probabilities and the integral in (54) is a Stieltjes integral. The second
possibility is that an individual starts in state 2 at time a and moves once to
state 1 at time x, for which the density is
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(12p) f2(x2a) (56)

The third possibility is that an individual starts in state 1 at time a, moves
to state 2, comes back to state 1 at time x, for which the density is

p f1(y2a) f2(x2y)dy. (57)

Summing all these densities ad infinitum, h1(x) is evaluated. h2(x) can be
analogously derived.

To verify the correctness of our likelihood functions, it is useful to check
the consistency of the maximum likelihood estimator. We will do this for
(53). We have

5 1 1 1 (58)

E 50 (59)

where P1 is the probability an individual is in state 1 at time 0 and is given
by

P15 h1(x)[12F1(2x)]dx (60)

Clearly, P2512P1.

Observe one state

Without loss of generality, we assume we observe only spells in state 1 at
time 0. The likelihood functions corresponding to the three types of cen-
soring can be written as follows

L15Ph1(xi ) f1(ti)P1
21 (61)

L25P h1(x) f1(ti2x)dxP1
21 (62)

L35Ph1(xi )[12F1(ti)]P1
21. (63)

These likelihood functions are not any simpler than those in the previous
case.
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Method which does not require starting-time distribution

As in section 6, this method works only for type 1 left censor. This estima-
tor maximizes the following conditional likelihood functions: L1* for the
case of observing both states and L1* for the case of observing only state 1.

L1*5 (64)

L1*5 . (65)

The consistency of these estimators can be shown by tracing the argument
in section 6.

It is instructive to recognize the term after the product symbol in (61) and
(65) as successive conditional likelihood functions of the term after the first
product symbol in (53). The term after the first product symbol in (53) can
be written as the product of three terms as follows

hf5 P (66)

where we have omitted the subscript 1 from all the letters. The product of
the first two terms in the right-hand side of (66) gives the term in (61)
and the first term alone in the right-hand side of (66) gives the term in 
(65).
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